I need to show that $$ 1-x\leq e^{-x} (*) $$ Now we know that $e^x:=\sum_{k=0}^\infty \frac{x^k}{k!}$, which means $$ e^{-x}:=\sum_{k=0}^\infty \frac{(-x)^k}{k!}=1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}-\frac{x^5}{5!}... $$ So after we subtract $1-x$ from both sides of the inequation (*) we have to show: $$ 0\leq \sum_{k=2}^\infty \frac{(-x)^k}{k!}=\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}-\frac{x^5}{5!}... $$
1.) $x=0$ : $\sum_{k=2}^\infty \frac{(-x)^k}{k!} = 0$
2.)$x=1$: $\frac{1}{2n+1}\leq \frac{1}{2n}$ for all $n\in\mathbb{N}$
3.) $x<0$: This is obvious since ever summand is positive.
4.) $0<x<1$: This is also obvious (?) because for such $x$ it holds that $x^{2n}>x^{2n+1}$ for all $n\in\mathbb{N}$ and also $\frac{1}{(2n)!}>\frac{1}{(2n+1)!}$. So $\sum_{k=2}^\infty \frac{(-x)^k}{k!}=\sum_{n=1}^\infty \frac{x^{2n}}{(2n)!} - \frac{x^{2n+1}}{(2n+1)!}>0 $ since all summands are positive.
5.) $x>1$: Here is where I struggle and need help please. This is the a bit of the opposite of 4 maybe.