Definite integral is the limit of Riemann sum.
$\lim\limits_{x \to a} f(x)=L$ is defined as:
For every $\varepsilon>0$, we can find a $\delta>0$ such that $\left| {f\left( x \right) - L} \right| < \varepsilon \hspace{0.5in}{\mbox{whenever}}\hspace{0.5in}0 < \left| {x - a} \right| < \delta$
In an analogous way (or in a different way), how can we define the limit of a sum?