Derivative of sigmoid function $\sigma (x) = \frac{1}{1+e^{-x}}$
but:
derive wrt θ1 and not wrt z=∑θixi
show that: $$ \frac{\partial \sigma(z)}{\partial \theta_1} = \sigma(z)(1-\sigma(z)) \cdot x_1 $$ with: $$ z = \theta_0 x_0 + \theta_1 x_1 $$
Note that in general (because of symmetry) holds:
$$ z = \theta_0 x_0 + \theta_1 x_1 + \dots $$
$$ \frac{\partial \sigma(z)}{\partial \theta_j} = \sigma(z)(1-\sigma(z)) \cdot x_j $$
How should I do this?