2

I am Trying to factorize the differential operator $[D^2-(x^2+1)]$ into two first order linear operators. But I have not been able to.

I am trying to split it into $[D+A][D-B]f=[D^2-(x^2+1)]f$. But at the end I get a really ugly differential equation that I cannot solve (It should be an easy one).

Is there any hint?

Thanks

user66130
  • 79
  • 1
  • 5

1 Answers1

3

Factorization means, that for any differentiable function $f(x)$, and for some $a(x)$ and $b(x)$ we have: $$ (D^2 - (x^2+1)) \circ f(x) = f^{\prime\prime}(x) - (x^2+1) f(x) = \left( D + a(x) \right) \left(D + b(x) \right) \circ f(x) $$ Start expanding the right-hand-side: $$\begin{eqnarray} \left( D + a(x) \right) \left(D + b(x) \right) \circ f(x) &=& \left( D + a(x) \right) \circ \left( f^{\prime}(x) + b(x) f(x)\right) \\ &=& f^{\prime\prime}(x) + \left(b(x) f(x)\right)^\prime + a(x) f^\prime(x) + a(x) b(x) f(x) \\ &=& f^{\prime\prime}(x) + \left( a(x) + b(x) \right) f^\prime(x) + \left( a(x) b(x) + b^\prime(x) \right) f(x) \end{eqnarray} $$ Since the identity must hold for arbitrary $f(x)$ we should have $a(x) + b(x) = 0$ and $a(x) b(x) + b^\prime(x) = -x^2-1$, giving $a(x) = -b(x) = x$. Thus $$ (D^2 - (x^2+1)) = (D + x)( D-x) $$

Sasha
  • 70,631