3

Let $R$ be a commutative ring and $a_1, \dots, a_n$ elements of $R$. Prove that $$\frac{R[x_1, \dots, x_n]}{(x_1-a_1, \dots, x_n-a_n)} \cong R.$$

We can look at this as \begin{align*} \frac{R[x_1, \dots, x_n]}{(x_1-a_1, \dots, x_n-a_n)} &\cong \frac{R[x_1]\cdots[x_n]}{(x-a_1, \dots, x-a_n)}\\ &\cong \frac{R[x_1]\cdots[x_n]/(x_n-a_n)}{(x-a_1, \dots, x-a_{n-1})}\\ &\cong \frac{R[x_1]\cdots[x_{n-1}]}{(x-a_1, \dots, x-a_{n-1})}\\ &\cong\\ &\ \ \vdots\\ &\cong R. \end{align*}


However, I want to use an explicit map $\varphi: R[x_1, \dots, x_n] \twoheadrightarrow R$ where $f(x_1, \dots, x_n) \mapsto f(a_1, \dots, a_n)$ and show $\ker \varphi = (x_1-a_1, \dots, x_n-a_n)$.

I can see $(x_i-a_i) \mapsto 0$ for $1 \le i \le n$ and so $(x_1-a_1, \dots, x_n-a_n) \subset \ker \varphi$.

How can I show that if $f(a_1, \dots, a_n) =0$, then $f(x_1, \dots, x_n) \in (x_1-a_1, \dots, x_n-a_n)$?

user5826
  • 11,982
  • (Up to an automorphism $x \mapsto x+a$) you can assume $a=(0,\ldots,0)$ then $f(0,\ldots,0)$ is the constant coefficient, if it is $0$ then $f \in (x_1,\ldots,x_n)$. Otherwise $(x_1-a_1,\ldots,x_n-a_n)$ is a maximal ideal thus the kernel can't contain anything more. – reuns Jun 18 '19 at 01:45
  • @reuns $(x_1-a_1,...,x_n-a_n)$ is certainly not maximal if $R$ is not a field! – Kevin Carlson Jun 18 '19 at 02:20
  • As what reuns suggested, WLOG, you can assume $a=(0,\dots, 0)$. Then $R[x_1,\dots,x_n]$ is free over $R$ with a basis $x_i$'s products. Now you have to show $f(0)$ contains no constant term which is exactly $f(0)=0$ giving. – user45765 Jun 18 '19 at 03:25
  • @KevinCarlson Maximal in those ideals compatible with the free R-module structure – reuns Jun 18 '19 at 03:26
  • Do the answers here answer your question? – Viktor Vaughn Jun 18 '19 at 05:03

0 Answers0