I know that if we have a countable collection of metric spaces $\{(X_n,\rho_n)\}_{n=1}^{\infty}$ then $X=\Pi^{\infty}_{n=1}X_n$ is a metric space with metric $\rho((x_n)_{n \in \mathbb{N}},(y_n)_{n \in \mathbb{N}})=\sum_{n=1}^{\infty} \dfrac{\rho_n(x_n,y_n)}{2^n [1+\rho_n(x_n,y_n)]}$.
Also I have proved that $X=\Pi^{\infty}_{n=1}X_n$ is a metric space with metric $\rho_\beta((x_n)_{n \in \mathbb{N}},(y_n)_{n \in \mathbb{N}})=\sum_{n=1}^{\infty} \dfrac{\rho_n(x_n,y_n)}{\beta^n [1+\rho_n(x_n,y_n)]}$ where $\beta \in \mathbb{N}$ and $\beta \geq 2$.
But I need to have it from a book or any bibliographic reference, exists some bibliographic reference to this problem with the metric $\rho_\beta$?