I'm working on an inductive proof, and I came across this line but I'm not sure how these are equivalent. Here is the link if more detail is needed. It's in box 2, first line.
$a^k - b^k = (a-b) \sum_{i=0}^{k-1}(a^{k-i-1}b^{i})$
I'm working on an inductive proof, and I came across this line but I'm not sure how these are equivalent. Here is the link if more detail is needed. It's in box 2, first line.
$a^k - b^k = (a-b) \sum_{i=0}^{k-1}(a^{k-i-1}b^{i})$
Expand the right hand side: $$\begin{align}(a-b)\sum_{i=0}^{k-1}a^{k-i-1}b^i&=a\sum_{i=0}^{k-1}a^{k-i-1}b^i-b\sum_{i=0}^{k-1}a^{k-i-1}b^i\\ &=\sum_{i=0}^{k-1}a^{k-i}b^i-\sum_{i=0}^{k-1}a^{k-i-1}b^{i+1}\\ &=\sum_{i=0}^{k-1}a^{k-i}b^i-\sum_{i=1}^{k}a^{k-i}b^{i}\\ &=a^k+\sum_{i=1}^{k-1}a^{k-i}b^i-b^k-\sum_{i=1}^{k-1}a^{k-i}b^{i}\\ &=a^k-b^k.\end{align}$$
The other way (left to right):
First prove by induction the special case: $$1-x^k=(1-x)\bigl(1+x+x^2+\dots+x^{k-1}\bigr).$$ The initial case ($k=1$) reduces to $\; 1-x=1-x$.
Suppose now the formula is established for some $k\ge 1$, and consider
So the inductive step is proved.
\begin{align} a^k-b^k=a^k\bigl(1-x^k\bigr)&=a^k(1-x)\bigl(1+x+x^2+\dots+x^{k-1}\bigr)\\ &=a(1-x)\,a^{k-1}\bigl(1+x+x^2+\dots+x^{k-1}\bigr) \\ &=(a-b)\bigl(a^{k-1}+a^{k-2}(ax)+a^{k-3}(a^2x^2)+\dots+a^{k-1}x^{k-1}\bigr)\\ &=(a-b)\bigl(a^{k-1}+a^{k-2}b+a^{k-3}b^2+\dots+b^{k-1}\bigr).\\ \end{align}