@Hagen von Eitzen shows that it holds for $m\ge 3$. Still it need to check if
$$\int_1^2\frac{\sqrt{x^6+4}}{x^3}\,\mathrm dx\ge\frac54.$$
This answer will prove that it holds for $m=2$. Let $f(x)=\frac{\sqrt{x^6+4}}{x^3}=\sqrt{1+\frac{4}{x^6}}$.
Assume $g(x)$ is a function on $[1,2]$ such that $f(x)> g(x)$ and $\int_1^2 g(x)\mathrm dx \ge \frac{5}{4}$. Then we have
$$\int_1^2 f(x)\mathrm dx > \int_1^2 g(x) \mathrm dx \ge \frac{5}{4}.$$
To find such function $g(x)$, I use Octave code (https://octave-online.net/bucket~HZvybAz3FzZBX2cvzgWg86 ) to find a class of function $g(x)=1+\frac{a_1}{x^{b1}}-\frac{a2}{x^{b2}}$. One solution is $(a_1,a_2,b_1,b_2)=(2,1,3,2)$. Thus $g(x)=1+\frac{2}{x^3}-\frac{1}{x^2}$ should be an option. However it still needs to prove that $g$ do satisfy the conditions.
- It follows from $1\le x \le 2$ that $x>0$ and $x^3-x+2>0$. Thus we have
$$\begin{split}
&f(x)>g(x) \\
\Longleftrightarrow &\sqrt{1+\frac{4}{x^6}}>1+\frac{2}{x^3}-\frac{1}{x^2} \\
\Longleftrightarrow &\sqrt{x^6+4}>x^3-x+2 \\
\Longleftrightarrow &x^6+4>(x^3-x+2)^2 \\
\Longleftrightarrow &x (2 x^3 - 4 x^2 - x + 4)>0 \\
\Longleftrightarrow &2 x^3 - 4 x^2 - x + 4>0 \\
\end{split}$$
It is easy to calculate that $\min_{1\le x\le 2}{2 x^3 - 4 x^2 - x + 4}=\frac{58}{27}>0$. So $f(x)>g(x)$.
- $\int_1^2 g(x)\mathrm dx =\int_1^2
\left(1+\frac{2}{x^3}-\frac{1}{x^2}\right) \mathrm dx =
\frac{x^3+x-1}{x^2}\Big|_1^2= \frac{5}{4}$
===================================
As a complete proof, I would like to use another method, "induction on $m$", to prove the original question.
For $m=2$, it is proved in the above. Assume that it holds for $m\ge 3$, i.e., $\sum_{n=1}^{m}\frac{1}{n^2}\leq\int_1^m\frac{\sqrt{x^6+4}}{x^3}\mathrm dx$.
Considering that $$\int_1^{m+1}\frac{\sqrt{x^6+4}}{x^3}\mathrm dx=\int_1^m\frac{\sqrt{x^6+4}}{x^3}\mathrm dx+\int_{m}^{m+1}\frac{\sqrt{x^6+4}}{x^3}\mathrm dx$$ and $$\sum_{n=1}^{m+1}\frac{1}{n^2}=\left(\sum_{n=1}^{m}\frac{1}{n^2}\right)+\frac{1}{({m+1})^2},$$ by induction it is sufficient to prove $$\int_{m}^{m+1}\frac{\sqrt{x^6+4}}{x^3}\mathrm dx\ge \frac{1}{({m+1})^2}.$$
Obviously, it is true since when $m\le x \le m+1$, $$\frac{\sqrt{x^6+4}}{x^3}\ge \frac{\sqrt{(m+1)^6+4}}{(m+1)^3}=\sqrt{1+\frac{4}{(m+1)^6}}> 1 \ge \frac{1}{({m+1})^2}.$$ So $$\int_{m}^{m+1}\frac{\sqrt{x^6+4}}{x^3}\mathrm dx>\int_m^{m+1} \frac{1}{({m+1})^2} \mathrm dx = \frac{1}{({m+1})^2}.$$
===================================
Remark: As the "P.S" added at the end of the OP, the author notices that $A=\int_{n}^{n+1}\frac{\sqrt{x^6+4}}{x^3}\mathrm dx$ is much greater than $B=\frac{1}{({n+1})^2}$ when $n$ is large enough. In fact $A-B\to 1$ when $n\to +\infty$ and it is obvious that $A>1>B$. If we rewrite
$\int_1^m\frac{\sqrt{x^6+4}}{x^3}\mathrm dx$ as $S_1=\sum_{n=2}^{m}\int_{n-1}^{n}\frac{\sqrt{x^6+4}}{x^3}\mathrm dx$ and compare it with $S_2=\sum_{n=1}^{m}\frac{1}{n^2}$, then you will find that the $n$-th item in $S_1$ is always greater than the $n$-th item in $S_2$ except $n=2$. However note that the number of items in $S_1$ is exact one less than that in $S_2$. So the first one item in $S_1$ has to corresponding to first two items in $S_2$. So I agree to Amit Zach's comment that it is more difficult to prove it for $m=2$.