1

I was reading the post " A set which the interior of its boundary is not empty ", and I conjectured the following:

Let $ (X, \tau ) $ be a topological space, and let $A \subseteq X $. If $int(\partial A) \neq \phi $ , then $int(A)= \phi $.

(Here $\phi $ represents the empty set).

How can I prove this?

Gabriel Romon
  • 35,428
  • 5
  • 65
  • 157

1 Answers1

3

Your conjecture is false. Let $X$ be the real line with the usual topology, and let $A=(0,\infty)\cup\mathbb Q$. Then $\partial A=(-\infty,0]$, so $\operatorname{int}\partial A=(-\infty,0)\ne\emptyset$, but $\operatorname{int}A=(0,\infty)\ne\emptyset$.

Greg Martin
  • 78,820
bof
  • 78,265