$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\int_{0}^{\infty}\bracks{1 - \cos\pars{7x} \over x}\expo{-x}\dd x} =
\Re\int_{0}^{\infty}\bracks{1 - \expo{7\ic x} \over x}\expo{-x}\dd x
\\[5mm] \stackrel{\mrm{IBP}}{=}\,\,\,&
-\Re\int_{0}^{\infty}\ln\pars{x}\bracks{-\expo{-x} + \pars{1 - 7\ic}\expo{-\pars{1 - 7\ic}x}}\dd x
\\[5mm] = &\
\int_{0}^{\infty}\ln\pars{x}\expo{-x}\dd x -
\Re\int_{0}^{\pars{1 - 7\ic}\infty}\bracks{\ln\pars{x} - \ln\pars{1 - 7\ic}}\expo{-x}\dd x
\\[5mm] = &\
\Re\ln\pars{1 - 7\ic} = \bbx{{1 \over 2}\,\ln\pars{50}}
\approx 1.9560
\end{align}