How would I differentiate functions with square roots such as:
$$3\sqrt{x}-\frac{2}{x^2}$$
$$\sqrt{1-x^2}$$
$$\sqrt{\frac{1-2x}{1+2x}}$$
$$\frac{2x}{\sqrt{x^2+7}}$$
How would I differentiate functions with square roots such as:
$$3\sqrt{x}-\frac{2}{x^2}$$
$$\sqrt{1-x^2}$$
$$\sqrt{\frac{1-2x}{1+2x}}$$
$$\frac{2x}{\sqrt{x^2+7}}$$
$\dfrac{\operatorname d}{\operatorname dx}\sqrt x=\dfrac 12x^{-\frac12}$.
The rest is just chain rule etc.
For example: $(\sqrt{\dfrac{1-2x}{1+2x}})'=\dfrac 12(\dfrac {1-2x}{1+2x})^{-\frac12}\cdot(\dfrac{1-2x}{1+2x})'=\dfrac 12(\dfrac {1-2x}{1+2x})^{-\frac12}\cdot(\dfrac{-2(1+2x)-(1-2x)\cdot2}{(1+2x)^2})=\sqrt{\dfrac {1+2x}{1-2x}}\cdot(\dfrac{-2}{(1+2x)^2})$.
You can take the general case, $$\frac{\mathrm{d}}{\mathrm{d}x}f(x)^a=af(x)^{a-1}\frac{\mathrm{d}}{\mathrm{d}x}f(x)$$
$$\sqrt{f(x)}=f(x)^{\frac{1}{2}}$$
$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{f(x)}{g(x)}=\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}$$
Hence, $$\left(\sqrt{\frac{1-2x}{1+2x}}\right)' = \left[\left(\frac{1-2x}{1+2x}\right)^{\frac{1}{2}}\right]'=\frac{1}{2}\left(\frac{1-2x}{1+2x}\right)^{\frac{1}{2}-1}\left(\frac{1-2x}{1+2x}\right)'$$
When you face products, quotients, powers, logarithmic differentiation makes life easier.
Consider the general case of $$g(x)=[f(x)]^a\implies \log(g(x))=a \log(f(x))$$ Differentiate both sides $$\frac{g'(x)}{g(x)}=a\frac{f'(x)}{f(x)}\implies g'(x)=a\ g(x)\frac{f'(x)}{f(x)}=a\ f(x)^{a-1} f'(x)$$