Start with breaking the denominator
$$I=\int_0^1 \frac{\ln^2x\arctan x}{x}\ dx-\int_0^1 \frac{x\ln^2x\arctan x}{1+x^2}\ dx$$
For the first integral, use $\arctan x=\sum_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{2n+1}$ and for the second integral, use the identity $\frac{\arctan x}{1+x^2}=\frac12\sum_{n=0}^\infty(-1)^n\left(H_n-2H_{2n}\right)x^{2n-1}$ we have
$$I=\sum_{n=0}^\infty\frac{(-1)^n}{2n+1}\int_0^1x^{2n}\ln^2x\ dx-\frac12\sum_{n=0}^\infty(-1)^n(H_n-2H_{2n})\int_0^1x^{2n}\ln^2x\ dx$$
$$=2\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^4}-\sum_{n=0}^\infty(-1)^n\frac{H_n-2H_{2n}}{(2n+1)^3}$$
$$=2\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)^4}-\sum_{n=0}^\infty\frac{(-1)^nH_n}{(2n+1)^3}+2\sum_{n=0}^\infty\frac{(-1)^nH_{2n}}{(2n+1)^3},\quad H_{2n}=H_{2n+1}-\frac{1}{2n+1}$$
$$=\sum_{n=0}^\infty\frac{(-1)^{n-1}H_n}{(2n+1)^3}+2\sum_{n=0}^\infty\frac{(-1)^nH_{2n+1}}{(2n+1)^3}$$
Substitute
$$\sum_{n=0}^\infty\frac{(-1)^{n-1}H_n}{(2n+1)^3}=\frac{7\pi}{16}\zeta(3)+\frac{\pi^3}{16}\ln2+\frac{\pi^4}{32}-\frac1{256}\psi^{(3)}\left(\frac14\right)$$
and
$$\sum_{n=0}^\infty(-1)^n\frac{H_{2n+1}}{(2n+1)^3}=\frac1{384}\psi^{(3)}\left(\frac14\right)-\frac{1}{48}\pi^4-\frac{35}{128}\pi\zeta(3)$$
we obtain that
$$I=\frac{\pi^3}{16}\ln2-\frac{7\pi}{64}\zeta(3)-\frac{\pi^4}{96}+\frac1{768}\psi^{(3)}\left(\frac14\right)$$