If $ x^3+bx^2+cx+1=0$ has only real root $\alpha $.
Where $(b<c)$. Then $\displaystyle 2\tan^{-1}(\csc \alpha)+\tan^{-1}(2\sin \alpha\sec^2\alpha)$ is
Plan
$$\tan^{-1}\bigg(\frac{2\csc \alpha}{1-\csc^2\alpha}\bigg)+\tan^{-1}\bigg(2\sin \alpha\sec^2\alpha\bigg)$$
$$\tan^{-1}\bigg(\frac{\frac{2\csc\alpha}{1-\csc^2\alpha}+2\sin\alpha\sec^2\alpha}{1-\frac{2\csc\alpha}{1-\csc^2\alpha}2\sin\alpha\sec^2\alpha}\bigg)$$
How do i solve it Help me please