Given the log sine integral,
$$\rm{Ls}_m\Big(\frac{\pi}3\Big) = \int_0^{\pi/3}\Big(\ln\big(2\sin\tfrac{\theta}{2}\big)\Big)^{m-1}\,d\theta$$
we have in this post,
$$\begin{aligned} \frac\pi{2!}\,\rm{Ls}_2\Big(\frac{\pi}3\Big) &=-\frac34\sum_{n=1}^\infty \frac{1}{n^3\,\binom {2n}n} -\zeta(3)\\ \frac{2^3\pi}{3!}\rm{Ls}_4\Big(\frac{\pi}3\Big) &=-3\sum_{n=1}^\infty \frac{1}{n^5\,\binom {2n}n} -19\zeta(5)-2\zeta(2)\zeta(3) \\ \frac{2^8\pi}{5!}\rm{Ls}_6\Big(\frac{\pi}3\Big) &=-24 \sum_{n=1}^\infty \frac{1}{n^7\,\binom {2n}n} -493\zeta(7)-48\zeta(2)\zeta(5)-164\zeta(3)\zeta(4) \\ \frac{2^{10}\cdot9\pi}{7!}\rm{Ls}_8\Big(\frac{\pi}3\Big) &=-6^3 \sum_{n=1}^\infty \frac{1}{n^9\,\binom {2n}n}-13921\zeta(9)-6^4\zeta(2)\zeta(7)-6087\zeta(3)\zeta(6)\\ &-4428\zeta(4)\zeta(5)-192\zeta^3(3)\end{aligned}$$
while in this post,
$$\begin{aligned} \rm{Ls}_2\Big(\frac\pi3\Big) &= -\rm{Cl}_2\Big(\frac\pi3\Big)\\ \rm{Ls}_4\Big(\frac\pi3\Big) &= -\tfrac92\rm{Cl}_4\Big(\frac\pi3\Big)-\tfrac12\pi\,\zeta(3)\\ \rm{Ls}_6\Big(\frac\pi3\Big) &= -\tfrac{135}2\rm{Cl}_6\Big(\frac\pi3\Big)-\tfrac{35}{36}\pi^3\,\zeta(3)-\tfrac{15}{2}\pi\,\zeta(5) \end{aligned}$$
with the Clausen function for even $m$,
$$\rm{Cl}_m(x) =\sum_{k=1}^\infty \frac{\sin(kx)}{k^m}$$
These identities imply a triple relation between $\rm{Ls}_m\big(\frac\pi3\big)$, $\rm{Cl}_m\big(\frac\pi3\big)$, and $\sum_{n=1}^\infty \frac{1}{n^{m+1}\,\binom {2n}n}$
Q: However, the triple relation for $m=8$ is missing. Is there also for $m=8$?