Find two last digit of $77777^{77777}$
observation:
We want to find $77777^{77777} \mod 100$. To simplify our exercise, we can consider only two last digits. So I am looking for length of cycle...
$$ 77^{0} \equiv 1\mod 100 \\ 77^{1} \equiv 77\mod 100 \\ 77^{2} \equiv 29\mod 100 \\ 77^{3} \equiv 33\mod 100 \\ 77^{4} \equiv 41\mod 100 \\ 77^{5} \equiv 57\mod 100 \\ 77^{6} \equiv 89\mod 100 \\ 77^{7} \equiv 53\mod 100 \\ 77^{8} \equiv 81\mod 100 \\ 77^{9} \equiv 37\mod 100 \\ 77^{10} \equiv 49\mod 100 \\ 77^{11} \equiv 73\mod 100 \\ 77^{12} \equiv 21\mod 100 \\ 77^{13} \equiv 17\mod 100 \\ 77^{14} \equiv 9\mod 100 \\ 77^{15} \equiv 93\mod 100 \\ 77^{16} \equiv 61\mod 100 \\ 77^{17} \equiv 97\mod 100 \\ 77^{18} \equiv 69\mod 100 \\ 77^{19} \equiv 13\mod 100 \\ 77^{20} \equiv 1\mod 100 \\ $$
Ok, so cycle has length $20$. $77777 \mod 20 = 17$ so my result is $$ 97 $$ and there is a question - is there any faster method to find length of cycle? I mean that calculating each next modulo costs a lot of time and I am looking for some faster method.