Like Inverse trigonometric function identity doubt: $\tan^{-1}x+\tan^{-1}y =-\pi+\tan^{-1}\left(\frac{x+y}{1-xy}\right)$, when $x<0$, $y<0$, and $xy>1$,
$$\tan^{-1}\sqrt{\dfrac{x(x+y+z)}{yz}}+\tan^{-1}\sqrt{\dfrac{y(x+y+z)}{zx}}$$ $$=\begin{cases} \tan^{-1}\left(\dfrac{\sqrt{\dfrac{x(x+y+z)}{yz}}+\sqrt{\dfrac{y(x+y+z)}{zx}}}{1-\sqrt{\dfrac{x(x+y+z)}{yz}}\cdot\sqrt{\dfrac{y(x+y+z)}{zx}}}\right) &\mbox{if } \sqrt{\dfrac{x(x+y+z)}{yz}}\cdot\sqrt{\dfrac{y(x+y+z)}{zx}}<1 \ \ \ \ (1) \\
\pi+\tan^{-1}\left(\dfrac{\sqrt{\dfrac{x(x+y+z)}{yz}}+\sqrt{\dfrac{y(x+y+z)}{zx}}}{1-\sqrt{\dfrac{x(x+y+z)}{yz}}\cdot\sqrt{\dfrac{y(x+y+z)}{zx}}}\right) & \mbox{if } \sqrt{\dfrac{x(x+y+z)}{yz}}\cdot\sqrt{\dfrac{y(x+y+z)}{zx}}>1 \ \ \ \ (2) \end{cases} $$
Now $R=\dfrac{\sqrt{\dfrac{x(x+y+z)}{yz}}+\sqrt{\dfrac{y(x+y+z)}{zx}}}{1-\sqrt{\dfrac{x(x+y+z)}{yz}}\cdot\sqrt{\dfrac{y(x+y+z)}{zx}}}=\sqrt{\dfrac{x+y+z}{xyz}}\cdot\dfrac{|z|(|x|+|y|)}{|z|-|x+y+z|}$
If $|x+y|,|z|,|x+y+z|\ge0,$ $$R=-\sqrt{\dfrac{x+y+z}{xyz}}\cdot z=-\sqrt{\dfrac{z(x+y+z)}{xy}}$$
Again $(2)$ will hold true if $\sqrt{\dfrac{x(x+y+z)}{yz}}\cdot\sqrt{\dfrac{y(x+y+z)}{zx}}>1 \iff (x+y+z)^2>z^2$
which is true if $x,y,z>0$
Finally $\tan^{-1}(-u)=-\tan^{-1}u$