$x_n$ is the solution of the fixed-point equation $$x_n=n\pi+\arctan(x_n).$$ For large $n$, this will be close to the pole of the tangent at $n\pi+\frac\pi2$, so this formula can be modified to
$$
x_n=n\pi+\frac\pi2-\arctan\left(\frac1{x_n}\right)=n\pi+\frac\pi2-\frac1{n\pi+\frac\pi2}+O(n^{-2}).
$$
as $\arctan(u)=u+O(u^3)$ for $u\approx 0$ and $\frac1{x_n}=\frac1{n\pi+\frac\pi2}+O(n^{-2})$.
This approximation $x_n^0=(n+\frac12)\pi-\left((n+\frac12)\pi\right)^{-1}$ of $x_n$ is even good for low values of $n$, as the numerical experiment shows
\begin{array}{r|ll}
n&x_n^0&x_n\\\hline
1 & 4.500182389595496 & 4.493409457909064 \\
2 & 7.726657679500967 & 7.725251836937707 \\
3 & 10.904628605797479 & 10.904121659428899 \\
4 & 14.066431410891004 & 14.066193912831473 \\
5 & 17.220885069983172 & 17.22075527193077 \\
6 & 20.371381496613076 & 20.37130295928756 \\
7 & 23.51950358376561 & 23.519452498689006 \\
8 & 26.666089333609268 & 26.66605425881267 \\
9 & 29.811623905294212 & 29.81159879089296 \\
\end{array}