Let $S_n=\frac{n^n}{(n+1)(n+2)...(n+n)}, n\geq 1$, then $S_n^{\frac{1}{n}}$ converges to
- $e/2$
- $e/4$
- $e/8$
- $0$
Clearly $S_n^{\frac{1}{n}}=\frac{n}{(n+1)^{\frac{1}{n}}(n+2)^{\frac{1}{n}}...(n+n)^{\frac{1}{n}}}$, then how can we proceed
Let $S_n=\frac{n^n}{(n+1)(n+2)...(n+n)}, n\geq 1$, then $S_n^{\frac{1}{n}}$ converges to
Clearly $S_n^{\frac{1}{n}}=\frac{n}{(n+1)^{\frac{1}{n}}(n+2)^{\frac{1}{n}}...(n+n)^{\frac{1}{n}}}$, then how can we proceed
We have $\frac{S_{n+1}}{S_n}=(1+\frac{1}{n})^n \frac{(n+1)^2}{(2n+1)(2n+2)} \to e/4.$
Hence $\lim S_n^{1/n}= \lim \frac{S_{n+1}}{S_n}=e/4.$
You can rewrite $S_n$ as $S_n = \frac{n^n \cdot n!}{(2n)!}$ and then use Stirling's approximation: $$n!\sim\sqrt{2\pi n} (\frac{n}{e})^n$$ $$(2n)! \sim \sqrt{4\pi n} (\frac{2n}{e})^{2n}$$ Substituting these you get that: $$S_n \sim \frac{n^n \cdot \sqrt{2\pi n} (\frac{n}{e})^n}{\sqrt{4\pi n} (\frac{2n}{e})^{2n}} = \frac{e^n}{\sqrt2 \cdot 2^{2n}}$$
Taking the $n^{th}$ root, you get that $$S_n^{\frac{1}{n}} \rightarrow \frac{e}{4}$$
We have $$(n+1)^n \lt (n+1)(n+2)...(n+n) \lt(2n)^n$$ and therefore $$\frac12=\frac{n}{2n}\le S_n^{\frac{1}{n}}\le \frac{n}{n+1}\le 1$$ and further $$\frac12 \le \lim\limits_{n\to 1}S_n^{\frac{1}{n}}\le 1$$ if that limit exists.
Only one of the proposed solution satisfies these inequalities. From $e=2.7\ldots$ follows $2.7<e<2.8$ and therefore
So if this limit exists and if it is one of these four numbers then it must be $\frac e 4$.
Another approach: $$\ln(S_n^{1/n})=-\frac1n\sum_{k=1}^n\ln\left(1+\frac kn\right)$$ which is a Riemann sum for the integral $$-\int_0^1\ln(1+x)\,dx.$$ So $$\lim_{n\to\infty}S_n^{1/n}=\exp\left(-\int_0^1\ln(1+x)\,dx\right)$$ so you just have to evaluate this integral.