Here is an alternate way that avoids your integral.
Writing the integrand in terms of a geometric sum we have:
$$\frac{1}{1 + y(x^2 - x)} = \sum_{n = 0}^\infty y^n (x - x^2)^n, \quad |x|, |y| < 1,$$
then
\begin{align}
I &= \int_0^1 \int_0^1 \frac{1}{1 + y(x^2 - x)} \, dy dx\\
&= \sum_{n = 0}^\infty \int_0^1 y^n \, dy \int_0^1 x^n (1 - x)^n \, dx\\
&= \sum_{n = 0}^\infty \frac{1}{n + 1} \cdot \operatorname{B}(n + 1, n + 1)\\
&= \sum_{n = 0}^\infty \frac{1}{n + 1} \cdot \frac{(n!)^2}{(2n + 1)!}\\
&= \sum_{n = 0}^\infty \frac{1}{(n + 1)(2n + 1) \binom{2n}{n}}.\tag1
\end{align}
Here $\operatorname{B}(x,x)$ denoted the Beta function while $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$ is the central binomial coefficient.
To find the sum in (1), the following (reasonably?) well known Maclaurin series can be recalled (for a proof, see here)
$$\frac{\sin^{-1} x}{\sqrt{1 - x^2}} = \sum_{n = 0}^\infty \frac{2^{2n} x^{2n + 1}}{(2n + 1) \binom{2n}{n}}, \quad |x| < 1.$$
Enforcing a substitution of $x \mapsto \sqrt{x}$, after rearranging one has
$$\frac{\sin^{-1} \sqrt{x}}{\sqrt{x} \sqrt{1 - x}} = \sum_{n = 0}^\infty \frac{2^{2n} x^n}{(2n + 1) \binom{2n}{n}}, \quad |x| < 1.$$
Integrating both sides with respect to $x$ from $0$ to $\frac{1}{4}$ leads to
$$\sum_{n = 0}^\infty \frac{1}{(n + 1)(2n + 1) \binom{2n}{n}} = 4 \int_0^{\frac{1}{4}} \frac{\sin^{-1} \sqrt{x}}{\sqrt{x} \sqrt{1 - x}} \, dx.$$
Making a substitution of $x = \sin^2 u$ in the integral readily leads to
\begin{align}
\sum_{n = 0}^\infty \frac{1}{(n + 1)(2n + 1) \binom{2n}{n}} &= 8 \int^{\frac{\pi}{6}}_0 u \, du = \frac{\pi^2}{9},
\end{align}
from which it follows that:
$$\int_0^1 \int_0^1 \frac{1}{1 + y(x^2 - x)} \, dy dx = \frac{\pi^2}{9}.$$