For the addition of inverse trigonometric functions, $\sin^{-1} x+\sin^{-1} y = \sin^{-1} ({x\sqrt{1-y^2} +y\sqrt{1-x^2}})$
But for $\sin^{-1} ({x\sqrt{1-y^2} +y\sqrt{1-x^2}}) = \left\{\begin{matrix} \sin^{-1} x +\sin^{-1} y, \text{ if } -1\leq x,y<1 \text{ and } x^2+y^2 \leq 1 \text{ or, if } xy<0 \text{ and } x^2+y^2 > 1 \\ \pi -(\sin^{-1} x +\sin^{-1} y), \text{ if } 0<x,y\leq 1 \text{ and } x^2 +y^2 >1 \\ -\pi-(\sin^{-1} x + \sin^{-1} y), \text{ if } -1\leq x,y<0 \text{ and } x^2+y^2 > 1 \end{matrix}\right.$
Now what I don't understand is that, " Where did the conditions come from?". Is there proof or anything for the conditions? Please explain.