Let $\Gamma\cong\mathbb{Z}^m\subset\mathbb{R}^n$ be a lattice, $m\leq n$. Consider the map
\begin{align*}
f:\mathbb{R}^n\to\mathbb{R}^{n-m}\times\mathbb{T}^m,(x_1,\dots,x_{n-m},y_1,\dots,y_m)\mapsto (x_1,\dots,x_{n-m},e^{2\pi iy_1},\dots,e^{2\pi iy_m})
\end{align*} where $\mathbb{T}^n=\prod_{I=1}^nS^1$. Then $f$ is surjective and the map
\begin{align*}
\bar{f}: \mathbb{R}^n/\Gamma\to\mathbb{R}^{n-m}\times\mathbb{T}^m, [x]\mapsto x
\end{align*} is a homeomorphism, where $x\sim y\Leftrightarrow f(x)=f(y)$. Now \begin{align*}
\mathbb{R}^n/\Gamma\cong\mathbb{R}^{n-m}\times\mathbb{T}^m
\end{align*} and by Tychonoff's Theorem and the fact that $S^1$ is compact,
\begin{align*}
\mathbb{R}^n/\Gamma \text{ is compact }\Leftrightarrow n=m.
\end{align*}