1

How to prove the following identity

$$ \text{cosec}^4{\frac{π}{n}}+\text{cosec}^4{\frac{2π}{n}}+\text{cosec}^4{\frac{3π}{n}} + \ldots+ \text{cosec}^4{\frac{(n-1)π}{n}} = \frac{(n^2+11)(n^2-1)}{45} $$

I tried to simplify the sum but I finally get stuck with the same question I don't know how to start the problem

Matti P.
  • 6,012
  • https://math.stackexchange.com/questions/1562037/question-regarding-fn-cot2-left-frac-pi-n-right-cot2-left-frac2-pin and $$\sum_{k=1}^{n-1}\left(1+\cot^2\dfrac{k\pi}n\right)^2 =\sum_{k=1}^{n-1}1+ 2\sum_{k=1}^{n-1}\cot^2\dfrac{k\pi}n+\sum_{k=1}^{n-1}\cot^4\dfrac{k\pi}n$$ – lab bhattacharjee Jun 03 '19 at 11:12
  • Could you please show your steps as to what you have tried? – Toby Mak Jun 03 '19 at 11:18
  • Thanks@lab bhattacharjee – RUTAN GALENO Jun 03 '19 at 11:33

1 Answers1

0

The best way is probably appealing to Chebyshev polynomials and Vieta's formula.

Note that $x=\sin(k\pi/n)$, $k=0,\dots,2n-1$, are the roots to $\cos(n\arccos(1-2x^2))=1$, i.e., $T_n(1-2x^2)=1$, where $T_n$ is the Chebyshev polynomial of the first kind.

Now using $$ T_n(y)=n\sum_{k=0}^n(-2)^k\frac{(n+k-1)!}{(n-k)!(2k)!}(1-y)^k $$ we get $$ 0=T_n(1-2x^2)-1=-1+n\sum_{k=0}^n(-2)^k\frac{(n+k-1)!}{(n-k)!(2k)!}(2x^2)^k $$ Hence $$ 0=-2n^2x^2+\frac23n^2(n^2-1)x^4-\frac4{45}n^2(n^4-5n^2+4)x^6+\dots $$ Excluding the two zeros $k=0,n$ (which gives $x=0$), we have $$ 0=-2n^2+\frac23n^2(n^2-1)x^2-\frac4{45}n^2(n^4-5n^2+4)x^4+\dots $$ So Vieta's formula gives \begin{align*} \sum_{k=1}^{n-1}\frac{1}{\sin^2(k\pi/n)}&=\frac13(n^2-1),\\ \sum_{1\leq k<l<n}\frac1{\sin^2(k\pi/n)\sin^2(l\pi/n)}&=\frac2{45}(n^4-5n^2+4) \end{align*} Hence \begin{align*} \sum_k\operatorname{cosec}^4(k\pi/n)&=\sum_k\frac{1}{\sin^4(k\pi/n)}\\ &=\left(\sum_k\frac{1}{\sin^2(k\pi/n)}\right)^2-2\sum_{k<l}\frac1{\sin^2(k\pi/n)\sin^2(l\pi/n)}\\ &=\left(\frac13(n^2-1)\right)^2-\frac4{45}(n^4-5n^2+4)\\ &=\frac1{45}(n^2+11)(n^2-1). \end{align*}

user10354138
  • 33,239