Suppose that $G$ is a group of order $924=2^2\cdot3\cdot7\cdot 11$. Prove that $G$ has an element of order $77$.
My attempt:
By Sylow theorems, we know that there exist elements $ a, b\in G$ with $o(a)=7 $ and $o(b)=11$. Note that $\gcd(7,11)=1$, so if we can show that $ab=ba$ then we are through.
Consider the group $\langle a \rangle$ acting on the set $\Omega=\{g\in G: o(g)=11\}$ by $$ a^k\cdot g:=a^kga^{-k}\ , k=1,2,...,7. $$ Note that the element and its conjugate have the same order and we can easily check that it is a well-defined $\langle a\rangle$ group action on $\Omega$. Now by the Burnside's lemma, we know that the number of orbits, denoted by $|\Omega/\langle a\rangle|$: $$ |\Omega/\langle a\rangle|=\frac{1}{7}\sum_{a^{k}\in\langle a\rangle}|\Omega^{a^k}| $$ where $\Omega^{a^k}=\{g\in\Omega:a^k\cdot g=g\}$.
Now suppose the converse, i.e., there are not elements fixed by $a^k$ in $\Omega$ if $k\ne 7$($a^7=e$ the unit), then $$ |\Omega/\langle a\rangle|=\frac{1}{7}\sum_{e}|\Omega^{e}|=\frac{|\Omega|}{7}\in\mathbb Z. $$ So $\displaystyle 7\vert |\Omega|$. But the number of Sylow $11$-subgroups $n_{11}| 12\cdot 7$ and $n_{11}\equiv 1\pmod {11}$, we have $n_{11}=1$ or $n_{11}=12$ and in either case, $|\Omega|=11-1=10$ and $|\Omega|=12\cdot (11-1)=12\cdot 10=120$, respectively. But neither $7$ divides $10$ nor $7$ divides $120$ and we are done.
Is my reasoning right? Moreover, I am looking for other solutions without using Burnside's lemma. Thank you.