Euler's theorem for primes (Also known as Fermat's little theorem) tells you that $a^{p-1}\equiv 1\mod p$ if $\gcd(p,a)=1$.
For $p=3$ you have
$a^2\equiv 1\mod 3$ if $\gcd (a,3)=1$.
So, $a^{33}\equiv (a^2)^{16}a\equiv a\bmod 3$ if$\gcd (a,3)=1$.
But note that $a^{33}\equiv a\bmod 3$ also in the case when $3|a$ (in that case $a^{33}\equiv a\equiv 0\bmod 3$.)
So, $a^{33}\equiv a\mod 3$ for all $a$.
Do the same for $p=5$, $p=17$ and prove that $a^{33}\equiv a\mod 5$ and $a^{33}\equiv a\mod 17$.
Finally, since $a$ is odd, $\gcd(16,a)=1$. So, Euler's theorem tells you that $a^8\equiv 1\mod 16$. Conclude from here that $a^{33}\equiv a\mod 16$.
If you have $a^{33}\equiv a$ mod 3,5,16,17. Then you have your result.
Short answer: Since $\varphi(3)$,$\varphi(5)$,$\varphi(17)$,$\varphi(16)$ are divisors of $32$. Then $a^{33}\equiv a\mod(3\times 5\times 17\times 16).$