$\quad$The question currently asks for a formal demonstration that
$$\ln\left(1+ \dfrac 2 {2x+1}\right) < \dfrac {4(x+1)}{(4x^2+8x+3)} \text{ for } x\in[1,+\infty).$$
$\quad$To show it's true for $x=1$, we must show $\ln\left(1+\dfrac23\right)<\dfrac{4(2)}{4+8+3}=\dfrac8{15}.$
By exponentiating both sides, this is equivalent to $\dfrac53<\exp\left(\dfrac8{15}\right).$
Well, $\dfrac53=\dfrac{375}{225}<\dfrac{377}{225}=1+\dfrac8{15}+\dfrac12\left(\dfrac{8}{15}\right)^2<\exp\left(\dfrac8{15}\right).$
$\quad$Furthermore, it can be shown that
$$\lim_{x\to\infty}\ln\left(1+ \dfrac 2 {2x+1}\right) = \lim_{x\to\infty}\dfrac {4(x+1)}{(4x^2+8x+3)} =0.$$
$\quad$Finally, it can be shown that $\ln\left(1+ \dfrac 2 {2x+1}\right)$ and $\dfrac {4(x+1)}{(4x^2+8x+3)}$ are monotonically decreasing in the relevant interval. If $0\le x _0<x_1,$ then $2x_0+1<2x_1+1,$ so $\dfrac1{2x_1+1}<\dfrac1{2x_0+1},$
so $\ln\left(1+ \dfrac 2 {2x_1+1}\right) < \ln\left(1+ \dfrac 2 {2x_0+1}\right),$
and $4x_1x_0^2+4x_0^2+5x_0<4x_0x_1^2+4x_1^2+5x_1; $
adding $8x_0x_1+3x_1+3x_0+3$ to both sides,
$4x_1x_0^2+8x_0x_1+3x_1+4x_0^2+8x_0+3<4x_0x_1^2+8x_0x_1+3x_0+4x_1^2+8x_1+3$
i.e., $4(x_1+1)(4x_0^2+8x_0+3)<4(x_0+1)(4x_1^2+8x_1+3),$ so $$\dfrac{4(x_1+1)}{(4x_1^2+8x_1+3)}<\dfrac{4(x_0+1)}{(4x_0^2+8x_0+3)}.$$