Write $x={a\over a+b},\ J=K-1$, and
$$f(x,J) = (1-x)^{J+1}\sum_{k=0}^J{J+k\choose k}x^k$$ Then we want to show $$f(x,J)+f(1-x,J)=1,\ J=0,1,2,\dots\tag{1}$$
We proceed by induction on $J$. When $J=0$, $(1)$ says $x+(1-x)=1.$
Suppose that $J>0$ and that $(1)$ is true for $J-1$. Then
$$\begin{align}
f(x,J)&=(1-x)^{J+1}\sum_{k=0}^J{J-1+k\choose k}x^k+(1-x)^{J+1}\sum_{k=0}^J{J-1+k\choose k-1}x^k\tag{2}
\end{align}$$
The first term on the right of $(2)$ is $$
(1-x)^{J+1}\sum_{k=0}^{J-1}{J-1+k\choose k}x^k+(1-x)^{J+1}{2J-1\choose J}x^J$$ or
$$(1-x)f(x,J-1)+(1-x)^{J+1}x^J{2J-1\choose J}\tag{3}$$
The second term on the right of $(2)$ is
$$\begin{align}
(1-x)^{J+1}\sum_{k=1}^J {J-1+k\choose k-1}x^k&=(1-x)^{J+1}\sum_{k=0}^{J-1}{J+k\choose k}x^{k+1}\\
&=xf(x,J)-(1-x)^{J+1}{2J\choose J}x^{J+1}\tag{4}
\end{align}$$
Now $(2),(3),\text{ and }(4)$ give
$
(1-x)f(x,J)=(1-x)f(x,J-1)+(1-x)^{J+1}x^J{2J-1\choose J}-(1-x)^{J+1}{2J\choose J}x^{J+1}\tag{6}
$
By symmetry,
$
xf(1-x,J)=xf(1-x,J-1)+x^{J+1}(1-x)^J{2J-1\choose J}-x^{J+1}{2J\choose J}(1-x)^{J+1}\tag{7}
$
Multiply $(6)$ by $x$, multiply $(7)$ by $1-x$, add the results and apply the induction hypothesis to get
$$
x(1-x)(f(x,J)+f(1-x,J))= x(1-x)\tag{8}$$ after verifying that $${2J\choose J}=2{2J-1\choose J}$$
This proves $(2)$ for $x\neq0,1$, but since it is a polynomial identity, it is true for these values also.