1

Is there a classical example for the fact that the differentiability class satify $$ C^{k+1} \subsetneq C^{k} $$ I'm interested in the $C^{k+1} \neq C^{k}$, then is I'm looking for a classical

Example of maps that are $C^k$ but not $C^{k+1}$. Maps $f_j:\mathbb{R}\to\mathbb{R}$.

For a compact interval the following example should work $$ f_k:[0,2]\to\mathbb{R},\quad f(x)=\begin{cases} 0&\text{for $x\in[0,1)$}\\ 1&\text{for $x\in[1,2]$} \end{cases} $$ then I build recursively $f_{k-1}$ by integrating $f_k$ thus the obtained $f_0$ or $f_1$ is $C^k$ but not $C^{k+1}$.

4 Answers4

2

Is the Weierstrass function classical enough? It is continuous but nowhere differentiable; if we integrate it $k$ times we obtain a function which is $C^k$ but not $C^{k + 1}$ for any point in its domain!

Robert Lewis
  • 71,180
1

Your example is even not continuous. Set $F_1(x)=\int_0^x |t|dt$ and $F_{k}(x)=\int_0^x F_{k-1}(t)dt.$

user657324
  • 1,863
1

I don't know if this is a classical example... Still, let $k \in \mathbb{N}$ and consider

$$ \forall x \in \mathbb{R}, \; f(x) = \begin{cases} x^{k+2} \displaystyle \sin\left( \frac{1}{x} \right) & \text{if } x \neq 0, \\[2mm] 0 & \text{otherwise.} \end{cases} $$

Then, $f \in \mathcal{C}^{k}\left( \mathbb{R} \right)$ but $f \notin \mathcal{C}^{k+1}\left( \mathbb{R} \right)$.

pitchounet
  • 6,576
0

What about $f_k(x)=\frac{1}{(k+1)!}|x|\cdot x^k$? We have that $f^{(k)}_k(x)=|x|$.

Michael Hoppe
  • 18,103
  • 3
  • 32
  • 49