Let
- $(E,\tau)$ be a topological space
- $\sim$ be an equivalence relation on $E$
- $[x]$ denote the equivalence class of $x$ with respect to $\sim$ for $x\in E$
- $E_\sim$ denote the quotient space of $E$ by $\sim$ and $$\pi_\sim:E\to E_\sim\;,\;\;\;x\mapsto[x]$$
Note that $$\tau_\sim:=\left\{U\subseteq E_\sim:\bigcup U\in\tau\right\}$$ is the final topology on $E_\sim$ with respect to $\pi_\sim$.
Are we able to show that $$\mathcal B(E_\sim)\stackrel{(1)}=\underbrace{\left\{B\subseteq E_\sim:\bigcup B\in\mathcal B(E)\right\}}_{=:\:\mathcal B_1}\stackrel{(2)}=\underbrace{\left\{B\subseteq E_\sim:\pi_\sim^{-1}(B)\in\mathcal B(E)\right\}}_{=:\:\mathcal B_2}?$$
Clearly, since $\pi_\sim$ is $(\tau,\tau_\sim)$-continuous, it is Borel measurable and hence $\mathcal B(E_\sim)\subseteq\mathcal B_2$.