If $$f(x) = \sum_{n=0}^{\infty} a_n x^n$$ converges for all $x\geq0$,with $|a_n| \leq \frac{K a^n}{n!}$ for all $n \in \mathbf{N}$ and some constant $K > 0$.
I need to show that $$\mathcal{L}\{f\}(s) = \sum_{n=0}^{\infty} \frac{a_n n!}{s^{n+1}}$$
Could someone give me a hint?