2

Is my solution correct? If not, what is the right way to do this and where is my mistake? $$\lim_{x\to\infty}\frac{\int_0^x (\arctan^2 t )dt}{\sqrt{x^2+1}}$$ (L`Hopital.) $$\lim_{x\to\infty}\frac{F'(x)-F'(0)}{2x\cdot\frac{1}{2\sqrt{x^2+1}}}$$ $$\lim_{x\to\infty}\frac{\arctan^2(x)-\arctan^2(0)}{\frac{1}{\sqrt{1+\frac{1}{x^2}}}}$$ $$\frac{\pi^2}{4}$$ Thank you.

0 Answers0