Problem: Let polynomial $Q_n (x) = \frac{x(x-1) \dots (x-n+1)}{n!} \in R[x]$ for some ring $R$. Show that $\forall t \in \mathbb{Z}, Q_n (t) \in \mathbb{Z}$.
My solution: For each $t \in \mathbb{Z}$, we have $t-1, t-2, \dots, t-n+1 \in \mathbb{Z}$, so $\frac{t(t-1) \dots (t-n+1)}{n!} \in \mathbb{Z}$ and $Q_n (t) \in \mathbb{Z}$.
Please check my solution. Thank all!