0

Problem: Let polynomial $Q_n (x) = \frac{x(x-1) \dots (x-n+1)}{n!} \in R[x]$ for some ring $R$. Show that $\forall t \in \mathbb{Z}, Q_n (t) \in \mathbb{Z}$.

My solution: For each $t \in \mathbb{Z}$, we have $t-1, t-2, \dots, t-n+1 \in \mathbb{Z}$, so $\frac{t(t-1) \dots (t-n+1)}{n!} \in \mathbb{Z}$ and $Q_n (t) \in \mathbb{Z}$.

Please check my solution. Thank all!

Minh
  • 983

1 Answers1

1

As shown here:
Binomial coefficient generalization
where $(\cdot )_{k}$ is the Pochhammer symbol, here standing for a falling factorial. So,
$$Q_n (x) = \frac{x(x-1) \dots (x-n+1)}{n!} = \frac {(x)_n} {n!} = \frac {\frac {x!} {(x-n)!}} {n!} = \frac {x!} {n! (x-n)!} = \binom x n \in R[x]$$ Now we know that $x$ is an integer so: $\forall t \in \mathbb{Z}, Q_n (t) \in \mathbb{Z}$.