How many solutions are there to
$x_{1} + x_{2} + x_{3} = 17 $ where $x_{i} \leq 7$ for $1\leq i \leq 3$
This problem and solution comes from this youtube video: https://www.youtube.com/watch?v=Y0CYHMqomgI&t=475s
Solution
$ x_{i} \leq 7 \rightarrow $ $ \overline{c_{i}} = x_{i} < 8 \rightarrow $ $ c_{i} = x_{i} \geq 8 $
$N(\overline{c_{1}c_{2}c_{3}}) = N - (Nc_{1}+Nc_{2}+Nc_{3}) + N(c_1c_2) + N(c_1c_3) + N(c_2c_3) - N(c_1c_2c_3)$
I understand the rest of the solution but not this negation part. How did he find out $N(\overline{c_{1}c_{2}c_{3}}) $ ?