This is the problem:
$$\sum_{n=2}^\infty \frac{n(n-1)}{2^n}$$
How can we write the exact sum of the series and determine if it is converges or not?
This is the problem:
$$\sum_{n=2}^\infty \frac{n(n-1)}{2^n}$$
How can we write the exact sum of the series and determine if it is converges or not?
Convergence is trivial from either the ratio or root tests.
To evaluate the sum, write $f(x):=\sum (x/2)^n=1/(1-x/2)$. Now notice that your sum is $f’’(1)$. In other words take two derivatives of the right side and plug in $x=1$. The answer should be 4.
Hint:
$$\sum_{n=2}^\infty n(n-1)x^n=x^2\Bigl(\sum_{n=2}^\infty n(n-1)x^{n-2}\Bigr)=x^2\Bigl(\sum_{n=0}^\infty x^{n}\Bigr)^{\!''}.$$
$$\frac{1}{1-x}=\sum_{n=0}^\infty x^n$$ $$(\frac{1}{1-x})''=\sum_{n=2}^\infty n(n-1)x^{n-2}$$ $$x^2(\frac{1}{1-x})''=\sum_{n=2}^\infty n(n-1)x^{n}$$ $$\frac{2x^2}{(1-x)^3}=\sum_{n=2}^\infty n(n-1)x^{n}$$ now let $x=\frac{1}{2}$