0

This is the problem:

$$\sum_{n=2}^\infty \frac{n(n-1)}{2^n}$$

How can we write the exact sum of the series and determine if it is converges or not?

aek
  • 19

3 Answers3

1

Convergence is trivial from either the ratio or root tests.

To evaluate the sum, write $f(x):=\sum (x/2)^n=1/(1-x/2)$. Now notice that your sum is $f’’(1)$. In other words take two derivatives of the right side and plug in $x=1$. The answer should be 4.

Alex R.
  • 32,771
1

Hint:

$$\sum_{n=2}^\infty n(n-1)x^n=x^2\Bigl(\sum_{n=2}^\infty n(n-1)x^{n-2}\Bigr)=x^2\Bigl(\sum_{n=0}^\infty x^{n}\Bigr)^{\!''}.$$

Bernard
  • 175,478
0

$$\frac{1}{1-x}=\sum_{n=0}^\infty x^n$$ $$(\frac{1}{1-x})''=\sum_{n=2}^\infty n(n-1)x^{n-2}$$ $$x^2(\frac{1}{1-x})''=\sum_{n=2}^\infty n(n-1)x^{n}$$ $$\frac{2x^2}{(1-x)^3}=\sum_{n=2}^\infty n(n-1)x^{n}$$ now let $x=\frac{1}{2}$

E.H.E
  • 23,280