Evaluate $$\lim_{n\rightarrow\infty}\sum_{r=0}^{n}\dfrac{{n\choose r}}{n^r\cdot(r+3)}$$
This form forcing me to use integrals, I tried expanding $${n\choose r}=\dfrac{n(n-1)\cdots (n-r+1)}{r!}$$ then dirtributing that $n^r$ to each braket to generate $$\dfrac{1(1-\frac{1}{n})\cdots (1-\frac{r-1}{n})}{r!}$$ then I don't know what to do with $r!$ and $r+3$.
How to proceed further?