I need to find the exact sum of the following series, $\sum_{n=2}^\infty \frac{(-1)^n}{n^3-n}$.
The solution goes like this:
$\sum_{n=2}^\infty \frac{(-1)^n}{n^3-n}$
$= \frac12\sum_{n=2}^\infty \frac{(-1)^n}{n-1} + \frac12\sum_{n=2}^\infty \frac{(-1)^n}{n+1} +\sum_{n=2}^\infty \frac{(-1)^n}{n}$
$=\frac12\ln2 + \frac12(\ln2 -(1-\frac12)) + \ln2-1$
$= 2\ln2-\frac54$
I understand how to do the first step by partial fractions. But I did not understand the next step. Can you help me understand how these sums become $\ln$s?
$\ln$
instead of$ln$
. Similarly for$\sin, \cos$
and so on. – saulspatz May 18 '19 at 15:07