Theorem $\,\Rightarrow\, c = \overbrace{a^{M}+1\mid a^{(M,N)}+1}^{\small\textstyle \Rightarrow \color{#90f}{M \le (M,N)}}\,\Rightarrow \color{#90f}{(M,N)= M}\Rightarrow M\mid N $
Theorem $\,\ \begin{align}c\mid a^M+1\\ c\mid a^N+1\end{align}\,$ $\Rightarrow\ \begin{align}&c\mid \color{#0a0}{a^{\large d}+1}\\ &\!d = {\small (M,N)}\end{align}\ \ $ Proof $\ $ Let $\,\begin{align} {\small M} &= dm\\ {\small N} &=\, dn\end{align}\,\ $ so $\ (m,n)=1$
$\!\!\bmod c\!:\ a^{\large dm}\equiv -1\equiv a^{\large dn}\!\Rightarrow a^{\large 2d\color{darkorange}m}\equiv 1\equiv a^{\large 2d\color{darkorange}n}\,$ thus $\,{\rm ord}\: a^{\large 2d}$ divides coprimes $\,\color{darkorange}{m,n}\,$ so it is $1,\,$ so $\,\color{#c00}{a^{\large 2d}\equiv 1}.\,$ $\,(m,n)\!=\!1^{\phantom{I^{I^I}}}\!\!\!\!\!\!\Rightarrow m\,$ or $\,n\,$ odd, wlog $\,n = 1\!+\!2j^{\phantom{I^I}\!\!\!\!}\,$ so $\ \color{#0a0}{{-}1}\equiv a^{\large dn}\!\equiv a^{\large d}(\color{#c00}{a^{\large 2d}})^{\large j}\!\equiv \color{#0a0}{a^{\large d}}$