Question: (Prove the following statement at the stack-project:) "[Lemma 17.4.3][1] states that if $f:X \rightarrow Y$ is a morphism of ringed space, $G$ is a locally free $O_Y$-module, then $f^*G$ is a locally free $O_X$ module."
Answer: Assume $E$ is a locally free sheaf on $Y$ of rank $r$. The pull back is defined using the $f^{-1}$-functor and this functor "commutes with direct sums". This fact implies the claim:
If $f^{\#}: \mathcal{O}_Y \rightarrow f_*\mathcal{O}_X$ is the map of structure sheaves, you get a corresponding map
$$ \tilde{f}: f^{-1}(\mathcal{O}_Y) \rightarrow \mathcal{O}_X$$
and you define $f^*(E):=\mathcal{O}_X \otimes_{f^{-1}(\mathcal{O}_Y)} f^{-1}(E)$. If $U \subseteq E$ is an open set where $E_U \cong \mathcal{O}_U^r$, let $F: f^{-1}(U) \rightarrow U$ be the induced map. It follows (we work with presheaves since we are taking a tensor product)
$$f^*(E)_{f^{-1}(U)} \cong \mathcal{O}_{f^{-1}(U)}\otimes_{F^{-1}(\mathcal{O}_U)}F^{-1}(E_U) \cong $$
$$\mathcal{O}_{f^{-1}(U)}\otimes_{F^{-1}(\mathcal{O}_U)} F^{-1}(\mathcal{O}_U^r) \cong \mathcal{O}_{f^{-1}(U)}\otimes_{F^{-1}(\mathcal{O}_U)} F^{-1}(\mathcal{O}_U)^r \cong $$
$$\mathcal{O}_{f^{-1}(U)}^r$$
since topological pull back commutes with direct sums. Hence the pull back $f^*(E)$ is locally trivial of the same rank $r$. If $E$ is locally free of arbitrary rank a similar argument applies.