Lemma: Let $(X,\mathcal{M})$ be a measurable space. Let $\mu$
be a complex measure on $(X,\mathcal{M})$, then there exists $E\subseteq X$
such that $||\mu||\leq8|\mu(E)|$.
Proof: If $||\mu||=0$, we are done. Suppose that $||\mu||>0$. For
$\varepsilon=\frac{1}{2}||\mu||>0$, there exists a partition $X=\cup_{j=1}^{n}E_{j}$,
where $E_{j}\in\mathcal{M}$ such that $||\mu||-\varepsilon<\sum_{j=1}^{n}|\mu(E_{j})|$.
For each $j$, write $\mu(E_{j})=\alpha_{j}+i\beta_{j}$, where $\alpha_{j},\beta_{j}\in\mathbb{R}$.
Define subsets $I_{1},I_{2},I_{3},I_{4}$ of $\{1,\ldots,n\}$ by
$I_{1}=\{j\mid\alpha_{j}\geq0\}$, $I_{2}=\{j\mid\alpha_{j}<0\}$,
$I_{3}=\{j\mid\beta_{j}\geq0\}$, and $I_{4}=\{j\mid\beta_{j}<0\}$.
Note that $I_{1}\cap I_{2}=I_{3}\cap I_{4}=\emptyset$. Further write
$\alpha_{j}=\alpha_{j}^{+}-\alpha_{j}^{-}$, $\beta_{j}=\beta_{j}^{+}-\beta_{j}^{-}$,
where for any $x\in\mathbb{R}$, $x^{+}=\max(x,0)$ and $x^{-}=\max(-x,0)$.
Let $s_{1}=\sum_{j=1}^{n}\alpha_{j}^{+}$, $s_{2}=\sum_{j=1}^{n}\alpha_{j}^{-}$,
$s_{3}=\sum_{j=1}^{n}\beta_{j}^{+}$, and $s_{4}=\sum_{j=1}^{n}\beta_{j}^{-}$.
Observe that
\begin{eqnarray*}
& & \sum_{j=1}^{n}|\mu(E_{j})|\\
& = & \sum_{j=1}^{n}|(\alpha_{j}^{+}-\alpha_{j}^{-})+i(\beta_{j}^{+}-\beta_{j}^{-})|\\
& \leq & \sum_{j=1}^{n}\alpha_{j}^{+}+\alpha_{j}^{-}+\beta_{j}^{+}+\beta_{j}^{-}\\
& = & s_{1}+s_{2}+s_{3}+s_{4}\\
& \leq & 4\max(s_{1},s_{2},s_{3},s_{4}).
\end{eqnarray*}
Consider the case that $s_{1}=\max(s_{1},s_{2},s_{3},s_{4})$. Define
$E=\cup_{j\in I_{1}}E_{j}$, then
\begin{eqnarray*}
|\mu(E)| & = & |\sum_{j\in I_{1}}\mu(E_{j})|\\
& = & |s_{1}+i\gamma_{1}|\\
& \geq & s_{1}\\
& = & \max(s_{1},s_{2},s_{3},s_{4}),
\end{eqnarray*}
for some $\gamma_{1}\in\mathbb{R}$ (which is not important).
If $s_{2}=\max(s_{1},s_{2},s_{3},s_{4})$, we define $E=\cup_{j\in I_{2}}E_{j}$,
then $|\mu(E)|=|-s_{2}+i\gamma_{2}|\geq s_{2}=\max(s_{1},s_{2},s_{3},s_{4})$.
If $s_{3}=\max(s_{1},s_{2},s_{3},s_{4})$, we define $E=\cup_{j\in I_{3}}E_{j}$,
then $|\mu(E)|=|\gamma_{3}+is_{3}|\geq s_{3}=\max(s_{1},s_{2},s_{3},s_{4})$.
If $s_{4}=\max(s_{1},s_{2},s_{3},s_{4})$, we define $E=\cup_{j\in I_{4}}E_{j}$,
then $|\mu(E)|=|\gamma_{4}-is_{4}|\geq s_{4}=\max(s_{1},s_{2},s_{3},s_{4}).$
Hence, we obtain
\begin{eqnarray*}
& & \frac{1}{2}||\mu||\\
& = & ||\mu||-\varepsilon\\
& < & \sum_{j=1}^{n}|\mu(E_{j})|\\
& \leq & 4\max(s_{1},s_{2},s_{3},s_{4})\\
& \leq & 4|\mu(E)|.
\end{eqnarray*}
That is, $||\mu||\leq8|\mu(E)|$.
/////////////////////////////////////////////////////////////////////
Now, we go back to the original question. Suppose that $\mu_{n}$
and $\mu$ are complex measures. For each $n$, define $\nu_{n}=\mu_{n}-\mu$.
Then $\nu_{n}(A)\rightarrow0$ uniformly on $A\in\mathcal{M}$, in
the sense that: For any $\varepsilon>0$, there exists $N$ such that
$|\nu_{n}(A)|<\varepsilon$ whenever $n\geq N$ and $A\in\mathcal{M}$.
Let $\varepsilon>0$ be given. Choose $N$ such that $|\nu_{n}(A)|<\varepsilon/8$
whenever $n\geq N$ and $A\in\mathcal{M}$. For each $n$, choose
$E_{n}\in\mathcal{M}$ such that $||\nu_{n}||\leq8|\nu_{n}(E_{n})|$.
Now, for any $n\geq N$, we have
\begin{eqnarray*}
& & ||\nu_{n}||\\
& \leq & 8|\nu_{n}(E_{n})|\\
& < & 8\cdot\frac{\varepsilon}{8}\\
& = & \varepsilon.
\end{eqnarray*}
Therefore $||\nu_{n}||\rightarrow0$.