Shifting trick in double series show that if $\displaystyle e^{x/2(t+1/t)}=\displaystyle\sum\limits_{n=-\infty}^\infty I_n t^n$ then $\displaystyle I_n=\sum\limits_{n=0}^\infty \frac{\left(x/2\right)^n}{(n+k)!k!}$
It was an exam question, lecturer never gives hint and answer even after the exam, so there might be little mistakes in the question.
My aim to ask this question is in the following direct solution somewhere they use shifting method go from n-finite to infinite sum limits. Any further and related hint, information will be appreciated.
$$\displaystyle e^{x/2(t+1/t)}=\displaystyle\sum\limits_{n=0}^{\infty}\left(x/2.\right(t+1/t))^n/n!$$$$=\displaystyle\sum\limits_{n=0}^{\infty}\left(\dfrac x2\right)^n/n!\sum_{k=0}^n\dbinom{n}{k}t^{n-k}t^{-k}$$$$=\displaystyle\sum\limits_{n=0}^{\infty}\sum_{k=0}^n\dfrac{(x/2)^n}{(n-k)!k!}t^{n-2k}$$
I stuck here, how can I get $\sum_0^\infty\sum_0^\infty$