I remember learning this method of factoring quadratics in middle school or high school, but looking for a name or more information on it leads me to dead ends.
Given:
$ax^2+bx+c=0$
$d*e=a*c$
$d+e=b$
Then the factorization of the quadratic is:
$(x+\frac{e}{a})*(x+\frac{d}{a})$
Proof:
$(x+\frac{e}{a})*(x+\frac{d}{a})=0$
$x^2+\frac{ex+dx}{a}+\frac{ed}{a^2}=0$
$x^2+\frac{x(e+d)}{a}+\frac{ed}{a^2}=0$
Via substitution of the given above:
$x^2+\frac{bx}{a}+\frac{ac}{a^2}=0$
$x^2+\frac{bx}{a}+\frac{c}{a}=0$
$a*(x^2+\frac{bx}{a}+\frac{c}{a})=a*(0)$
$ax^2+bx+c=0$