1

Suppose $f$ is analytic in the semi-disc: $|z| \le 1$, $\operatorname{Im}(z) > 0$ and real on the semi-circle $|z| = 1, \operatorname{Im}(z) > 0$. Show that if we set $$ g(z) = \begin{cases} f(z) & \text{if $|z| \le 1, \operatorname{Im}(z) > 0$} \\ \\ \overline{f\left(\frac{1}{\overline z}\right)} & \text{if $|z| > 1, \operatorname{Im}(z) > 0$} \\ \end{cases} $$ then $g$ is analytic in the upper half-plane.
Should I use specific theorems?I know about schwartz reflection principle. I wonder if it has a straightforward solution.

avs
  • 6,276
FreeMind
  • 2,539
  • 3
  • 20
  • 41

0 Answers0