It is clear for $p=3$ ($x=0$, $y=1$ and $x=0$, $y=-1$) .
Let $x_0^2+3y_0^2=p$ , $\qquad $ $(x_0,y_0) \in \mathbb{Z^2}$ .
Reduction modulo 3 gives $$x_0^2 \equiv p \pmod 3$$
it follows that $p \equiv 1\pmod 3$ .
Now I can use the fact that the class number of $\mathbb{Q[\sqrt-3}]$ is 1 , but I do not know how to make use of it .