Let $X_1,\ldots, X_n$ are i.i.d. random variables such that: $$f(x;\sigma ,\theta)=\frac{1}{\sigma}e^{\frac{-(x-\theta)}{\sigma}}, x\gt \theta$$ where $\sigma \gt 0 $ and $\theta \in R$ .
a) if $\theta $ is known, find a $100(1-\alpha)% $% confidence interval for $\sigma$. (Hint: use $\sum_{i=0}^n (X_i -\theta)$ or a modification)
b) if $\theta $ is unknown, find a $100(1-\alpha)% $% confidence interval for $\sigma$. (Hint: use $\sum_{i=0}^n (X_i -X_{(n)})$ or a modification)
a) Since $\theta$ is a location parameter then $X_i - \theta \sim Exp(1/\sigma)$ then $Y=\sum_{i=0}^n (X_i - \theta) \sim Gamma(n,1/ \sigma)$, so $\frac{\sigma}{2}Y\sim Gamma (n,1/2) \sim {\chi^2}_{2n}$ and solving $P(a\le\frac{\sigma}{2}Y\le b)=1-\alpha $ I can find the condidence interval. Is it right?
b)I found that $X_{(1)}-\theta\sim Exp (n/\sigma)$ I was thinking sum $X_i - \theta$ and $X_{(1)}-\theta$ but due to $X_{(1)}$ and $X_i$ are not independent I couldn't compute the distribution. Any ideas?