work out the $\sqrt{2i-1}?$
$2i-1=(a+bi)^2$
$a^2+2abi-b^2$
$a^2-b^2=-1$
$2ab=2$
$a^2=b^{-2}$
$b^{-2}-b^2=-1$
$-b^{4}+1=-1$
$b^4=2$
$b=\sqrt[4]{2}$
Can we solve $\sqrt{2i-1}$ in another way?
work out the $\sqrt{2i-1}?$
$2i-1=(a+bi)^2$
$a^2+2abi-b^2$
$a^2-b^2=-1$
$2ab=2$
$a^2=b^{-2}$
$b^{-2}-b^2=-1$
$-b^{4}+1=-1$
$b^4=2$
$b=\sqrt[4]{2}$
Can we solve $\sqrt{2i-1}$ in another way?
I am using polar coordinates.
In short, the polar or trigonometric form of the complex number $z=a+bi$ is $z=r(\cos\theta + i\sin\theta)$. Here, $r=\sqrt{a^2+b^2}$, and $\theta = \tan^{-1}{\frac ba}$ for $a>0$ or $\theta = \tan^{-1}{\frac ba + \pi}$ for $a<0$.
Converting $2i-1$ to polar form, you get $z=\sqrt 5(\cos(\tan^{-1}-2 + \pi) + i\sin(\tan^{-1}-2 + \pi)).$
DeMoivre's theorem states that for a positive integer $p$, the complex number $r(\cos\theta + i\sin\theta)$ has $p$ distinct $p$th roots. They are found by $$r^{\frac1p}\left(\cos\left(\frac{\theta+2\pi n}p\right)+i\sin\left(\frac{\theta+2\pi n}p\right)\right)$$$n = 0,1,2,...,p-1$
Here, $n=2$ (square root). I think you know how to proceed. Remember to calculate for both roots.