$\begin{align}{\bf Hint}\ \ \bmod 73\!:\,\ \color{#c00}{10^{\large 4}\equiv -1}\ \Rightarrow\ &\ d_0\,+\, d_1 \color{#c00}{10^{\large 4}} + d_2 \color{#c00}{10^{\large 8}}+\ \cdots\ \ \text{(in radix } 10^{\large 4}\ \text{with digits } d_i )\\[.2em]
\equiv\ &\ d_0\, -\, d_1\ \ \ +\ \ \ d_2\ \ \ \ \ \ -\ \cdots\ \ \text{(alternating digit sum)}\end{align}$
Same mod $\,137\,$ by $\, 10^{\large 4}+1 = 73\cdot 137.\ $
If we consider an integer in radix $\, 10^{\large 4}$ as a polynomial $\,P(10^{\large 4})$ in the radix then above is
$\!\bmod\, 10^{\large 4}+1\!:\,\ \color{#c00}{10^{\large 4}\equiv -1}\,\Rightarrow\, P(\color{#c00}{10^{\large 4}})\equiv P(\color{#c00}{-1}) \equiv\, $ alternating sum of digits in radix $10^{\large 4} $
which is the radix $10^{\large 4}$ analog of casting $11$'s in radix $10,\,$ i.e. the common test for divsibility by $11$, where the above inference employs the Polynomial Congruence Rule.
Remark $ $ The same method works if we replace $\,73\,$ by any integer $\,n\,$ coprime to $\,10\,$ since then $\,10^{\large k}\equiv 1 \pmod{\!n}$ for some integer $\,k>1,\,$ e.g. we can choose $\, k = \phi(n)\,$ by Euler's Theorem. The least such $\,k\,$ is known as the order of $10$ modulo $\,n,\,$ and it must divide $\,\phi(n).$
See also the closely related topic of periodicity of decimal expansion of rationals (fractions). e.g. $1/73\, =\, 0.\overline{01369863}\,$ repeats with period $\,\color{#0a0}8,\,$ and $\,0136 + 9863 = 9999,\,$ because $\!\bmod 73\!:\,\ \color{#c00}{10^{\large 4}\equiv -1}\,\Rightarrow\, 10^{\large\color{#0a0} 8}\equiv 1\,$ so $\,10\,$ has order $\,\color{#0a0}8\,$ modulo $73,\,$ by the Order Test.