Let $a$ be our sequence.
Thus, $a_1=1,$ $a_{n+1}=\sqrt{1+a_n}$, $a_n\geq1$ and by your work we obtain:
$$\left|a_n-\frac{1+\sqrt5}{2}\right|=\left|\sqrt{1+a_{n-1}}-\frac{1+\sqrt5}{2}\right|=\frac{\left|1+a_{n-1}-\frac{3+\sqrt5}{2}\right|}{\sqrt{1+a_{n-1}}+\frac{1+\sqrt5}{2}}=$$
$$=\frac{\left|a_{n-1}-\frac{1+\sqrt5}{2}\right|}{\sqrt{1+a_{n-1}}+\frac{1+\sqrt5}{2}}\leq\frac{\left|a_{n-1}-\frac{1+\sqrt5}{2}\right|}{\sqrt{2}+\frac{1+\sqrt5}{2}}\leq\frac{1}{3}\left|a_{n-1}-\frac{1+\sqrt5}{2}\right|\leq$$
$$\leq\frac{1}{3^2}\left|a_{n-2}-\frac{1+\sqrt5}{2}\right|\leq...\leq\frac{1}{3^{n-1}}\left|a_1-\frac{1+\sqrt5}{2}\right|\rightarrow0,$$
which says that indeed $$\lim_{n\rightarrow+\infty}a_n=\frac{1+\sqrt5}{2}.$$