Your idea to take logarithm of both expressions is good. Now
\begin{align}
2019\cdot\log 2018&=\color{blue}{2018\cdot\log 2018}+\log2018\tag1\\[2em]
2018\cdot\log 2019 &=2018\cdot\log \left(2018\cdot{2019\over2018}\right) \\
&= 2018\cdot(\log 2018 + \log{2019\over 2018}) \\
&=\color{blue}{2018\cdot\log 2018}+2018\cdot\log\left({2019\over 2018}\right)\tag2
\end{align}
As both $(1)$ and $(2)$ have their first addend (in blue) the same, what is greater:
$$\log2018,\ \text{or}\tag3$$
$$2018\cdot\log\left({2019\over 2018}\right)\ ?\tag4$$