Evaluate: $\displaystyle\int\limits^{\cssId{upper-bound-mathjax}{\class{placeholder}{}}}_{\cssId{lower-bound-mathjax}{\class{placeholder}{}}} \ln\left(x+\sqrt{1+x^2}\right)\,\cssId{int-var-mathjax}{\mathrm{d}x}$
As of now, I am able to simplify it to
$\displaystyle\int\ln\left(x\right) + \int\ln\left(\sqrt{x^2+\dfrac{1}{x^2}}+1\right)$
Edit: The answer is $x\ln\left(\sqrt{1+{x^2}}+x\right) - (\sqrt{1+{x^2}}) + C$