For $d=2$ or $3$ the continuous fractions for $\sqrt 2$ and $\sqrt 3$ help (at least partially), but for $d\ge 5$, this doesn't seem to work.
Is there any known solution or technique to solve this equation?
For $d=2$ or $3$ the continuous fractions for $\sqrt 2$ and $\sqrt 3$ help (at least partially), but for $d\ge 5$, this doesn't seem to work.
Is there any known solution or technique to solve this equation?
here is a good one, several orbits, your $d=13.$ There are six orbits, with $w_n^2 - 13 v_n^2 = -12,$ and recurrences $$ w_{n+12} = 1298 w_{n+6} - w_n \; , \; $$ $$ v_{n+12} = 1298 v_{n+6} - v_n \; . \; $$
The orbit we knew about begins with $w$ in $$ 1, 2989, 3879721, 5035874869, $$ and $v$ in $$ 1, 829, 1076041, 1396700389, $$
The next (out of six) orbit begins $$ 14, 18446, 23942894, $$ $$ 4, 5116, 6640564, $$
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
649 2340
180 649
Automorphism backwards:
649 -2340
-180 649
649^2 - 13 180^2 = 1
w^2 - 13 v^2 = -12 = -1 * 2^2 3
Thu May 9 12:08:38 PDT 2019
w: 1 v: 1 SEED KEEP +-
w: 14 v: 4 SEED KEEP +-
w: 25 v: 7 SEED KEEP +-
w: 155 v: 43 SEED BACK ONE STEP -25 , 7
w: 274 v: 76 SEED BACK ONE STEP -14 , 4
w: 1691 v: 469 SEED BACK ONE STEP -1 , 1
w: 2989 v: 829
w: 18446 v: 5116
w: 32605 v: 9043
w: 201215 v: 55807
w: 355666 v: 98644
w: 2194919 v: 608761
w: 3879721 v: 1076041
w: 23942894 v: 6640564
Thu May 9 12:08:53 PDT 2019
w^2 - 13 v^2 = -12 = -1 * 2^2 3
well, there are several details.
jagy@phobeusjunior:~$ ./Pell_Lubin_tableaux 13
Method described by Prof. Lubin at Continued fraction of $\sqrt{67} - 4$
$$ \sqrt { 13} = 3 + \frac{ \sqrt {13} - 3 }{ 1 } $$ $$ \frac{ 1 }{ \sqrt {13} - 3 } = \frac{ \sqrt {13} + 3 }{4 } = 1 + \frac{ \sqrt {13} - 1 }{4 } $$ $$ \frac{ 4 }{ \sqrt {13} - 1 } = \frac{ \sqrt {13} + 1 }{3 } = 1 + \frac{ \sqrt {13} - 2 }{3 } $$ $$ \frac{ 3 }{ \sqrt {13} - 2 } = \frac{ \sqrt {13} + 2 }{3 } = 1 + \frac{ \sqrt {13} - 1 }{3 } $$ $$ \frac{ 3 }{ \sqrt {13} - 1 } = \frac{ \sqrt {13} + 1 }{4 } = 1 + \frac{ \sqrt {13} - 3 }{4 } $$ $$ \frac{ 4 }{ \sqrt {13} - 3 } = \frac{ \sqrt {13} + 3 }{1 } = 6 + \frac{ \sqrt {13} - 3 }{1 } $$
Simple continued fraction tableau:
$$
\begin{array}{cccccccccccccccccccccccc}
& & 3 & & 1 & & 1 & & 1 & & 1 & & 6 & & 1 & & 1 & & 1 & & 1 & & 6 & \\
\\
\frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 3 }{ 1 } & & \frac{ 4 }{ 1 } & & \frac{ 7 }{ 2 } & & \frac{ 11 }{ 3 } & & \frac{ 18 }{ 5 } & & \frac{ 119 }{ 33 } & & \frac{ 137 }{ 38 } & & \frac{ 256 }{ 71 } & & \frac{ 393 }{ 109 } & & \frac{ 649 }{ 180 } \\
\\
& 1 & & -4 & & 3 & & -3 & & 4 & & -1 & & 4 & & -3 & & 3 & & -4 & & 1
\end{array}
$$
$$ \begin{array}{cccc} \frac{ 1 }{ 0 } & 1^2 - 13 \cdot 0^2 = 1 & \mbox{digit} & 3 \\ \frac{ 3 }{ 1 } & 3^2 - 13 \cdot 1^2 = -4 & \mbox{digit} & 1 \\ \frac{ 4 }{ 1 } & 4^2 - 13 \cdot 1^2 = 3 & \mbox{digit} & 1 \\ \frac{ 7 }{ 2 } & 7^2 - 13 \cdot 2^2 = -3 & \mbox{digit} & 1 \\ \frac{ 11 }{ 3 } & 11^2 - 13 \cdot 3^2 = 4 & \mbox{digit} & 1 \\ \frac{ 18 }{ 5 } & 18^2 - 13 \cdot 5^2 = -1 & \mbox{digit} & 6 \\ \frac{ 119 }{ 33 } & 119^2 - 13 \cdot 33^2 = 4 & \mbox{digit} & 1 \\ \frac{ 137 }{ 38 } & 137^2 - 13 \cdot 38^2 = -3 & \mbox{digit} & 1 \\ \frac{ 256 }{ 71 } & 256^2 - 13 \cdot 71^2 = 3 & \mbox{digit} & 1 \\ \frac{ 393 }{ 109 } & 393^2 - 13 \cdot 109^2 = -4 & \mbox{digit} & 1 \\ \frac{ 649 }{ 180 } & 649^2 - 13 \cdot 180^2 = 1 & \mbox{digit} & 6 \\ \end{array} $$