I need to find the solutions of $$\sin(x)+\cos(x)-3\cdot\sin(x)\cos(x)+1=0$$
My try: I rewrite the equation: $\sin(x)+\cos(x)-\frac{3}{2}\cdot\sin(2x)+1=0\Rightarrow \frac{3}{2}\sin(2x)-1=\cos(x)+\sin(x)$ then I squared both sides and I got $\frac{9}{4}\sin^{2}(2x)-3\sin(2x)-\sin(2x)=0$
I noted $\sin^{2}(2x)=t$ and I got $t=0; t=16/9$ so $\sin(2x)=0$ and I got $x\in\left \{ \frac{k\pi}{2}|k\in\mathbb{Z} \right \}$ but the right answer is $(2k+1)\pi|k\in Z$
Where's my mistake?